# Unit Vectors

Definition: A vector $\vec{u}$ is considered to be a Unit Vector if the norm of $\vec{u}$ is equal to $1$, that is $\| \vec{u} \| = 1$. |

For example, consider the vector $\vec{u} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$. This vector is a unit vector since $\| \vec{u} \| = \sqrt{ \left( \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1$.

Furthermore, sometimes it may be necessary to find a unit vector given some other vector as reference. If we have some vector $\vec{u}$, we can find a unit vector $\vec{u}_{unit}$ that goes in the same direction as $\vec{u}$ with the following formula:

(1)

For example, consider the vector $\vec{u} = (3, 4)$. We note that $\| \vec{u} \| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$. If we wanted to find a unit vector that went in the same direction as $\vec{u}$, all we would do is apply our formula, that is $\vec{u}_{unit} = \vec{u}\frac{1}{\| \vec{u} \|} = (3, 4) \cdot \frac{1}{5} = (\frac{3}{5}, \frac{4}{5})$.

## Example 1

**Find a unit vector that goes in the same direction as vector $\vec{u} = (1, 2, 3)$ and then verify this new vector has a magnitude of $1$ and goes in the same direction as $\vec{u}$.**

To solve this equation, we first need to calculate $\| \vec{u} \|$:

(2)

We can now apply the formula from earlier to find the unit vector that goes in the same direction as vector $\vec{u}$ and has a magnitude of 1.

(3)

Verifying the magnitude of this vector is rather easy. All we have to do is evaluate the norm of this vector and show that it is 1 as follows:

(4)

Now we know that if $k$ is a scalar, then the vector $k\vec{u}$ will go in the same direction as $\vec{u}$. In this case, our scalar is $\frac{1}{\| \vec{u} \|}$, so our result will go in the same direction as our original vector.

## Example 2

**Given the vector $\vec{a} = (a_1, \frac{1}{2}, \frac{1}{3})$, give all values for the component $a_1$ such that $\| \vec{a} \| = 1$.**

Since $\vec{u} \in \mathbb{R}^3$, we substitute into the formula for the norm of a vector to obtain:

(5)

Therefore if $a_1 = \pm \sqrt{\frac{23}{36}}$, then $\| \vec{u} \| = 1$.

### Related post:

- Dr M: Get over your nationalistic pride, accept English – Malaysiakini
- Reminiscence of Pre-matric, Post-matric, UG and PG days of an aerobiologist of NE India – The Sangai Express
- A Holiday For Celebrating Women In Mathematics – Forbes
- University subject profile: mathematics – The Guardian
- CBSE CTET 2019: Check Best Books for Next Exam Preparation – Paper 1 & 2! – Jagran Josh
- Anand Kumar of Super 30: The man behind the role Hrithik Roshan plays – National Herald
- NIT, Raipur Recruitment 2019 for 03 Visiting Faculty Posts – Jagran Josh
- We have one ISRO, we need an ISRO for Chemistry, Mathematics, Physics, Environment: Prof. K Vijay Raghavan – Careers360
- Year six leaders at St Peter’s Primary host science, engineering and mathematics challenges for students at lunchtime – Port Macquarie News
- Army game-theory research better allocates military resources, fight cancer – EurekAlert