# Properties of The Double Integral

We are now going to look at some properties of the double integral.

Theorem 1: Let $z = f(x, y)$ be a two variable real-valued function that is integrable over $D \subseteq D(f)$. Then:a) If $D$ has zero area, then $\iint_D f(x, y) \: dA = 0$.b) If $D$ has area $d$, then $\iint_D f(x, y) \: k = kd$.c) $\iint_D \left ( f(x, y) + g(x, y) \right ) \: dA = \iint_D f(x,y) \: dA + \iint_D g(x,y) \: dA$ (Addition Property).d) $\iint_D kf(x, y) \: dA = k \iint_D f(x,y) \: dA$ (Scalar Multiple Property).e) If $f(x,y) ≤ g(x,y)$ for all $(x, y) \in D$ then $\iint_D f(x,y) \: dA ≤ \iint_D g(x,y) \: dA$.f) $\biggr \rvert \iint_D f(x,y) \: dA \biggr \rvert ≤ \iint_D \mid f(x,y) \mid \: dA$.g) If $D_1, D_2, …, D_n \subseteq D(f)$ are non-overlapping subsets of $D(f)$ that share no interior points with each other and $D = \bigcup_{k=1}^{n} D_k$ then $\iint_D f(x,y) \: dA = \sum_{k=1}^{n} \iint_{D_k} f(x,y) \: dA$ (Additivity of Domains Property). |

### Related post:

- Grade Nine learners taught mathematics skills – Tembisan
- A Library Browse Leads Math’s Bill Dunham to Question the Origins of The Möbius Function – Bryn Mawr Now
- Year 5 and 6 students to sit competition this Wednesday – Great Lakes Advocate
- USC student wins silver medal in China math contest – SunStar Philippines
- CBSE Exam 2020: Two separate examinations to be conducted for Class 10 Mathematics – Jagran Josh
- Concepts incomplete, problems unsolvable in math textbooks – Times of India
- Education Ministry to Host Tertiary and Employment Fairs – Government of Jamaica, Jamaica Information Service
- Vogue’s Edwina McCann and Westpac’s Anastasia Cammaroto on how they inspire women to pursue STEM – Vogue Australia
- Jonee Wilson, Temple Walkowiak to Measure High-Quality Instructional Practices to Support Marginalized Students in Rigorous Mathematics through NSF Grant – NC State College of Education
- Australian Conference on Science and Mathematics Education – Australian Academy of Science