# Properties of Determinants

We will now look at some very important properties of determinants

Theorem 1: If $A$ is an $n \times n$ matrix and $k$ is any scalar, then $\det(kA) = k^n \det(A)$. |

**Proof:**Consider the determinant of an $n \times n$ matrix $A$ multiplied through by the scalar $k$, that is $\det(kA) = \begin{vmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ ka_{n1} & ka_{n2} & \cdots & ka_{nn} \end{vmatrix}$. Now recall that if we take a matrix $A$ and multiply any row or column by a scalar $k$, the new determinant of that matrix will be $k$-times the original since cofactor expansion along that row would clearly yield a determinant $k$-times greater. In this case, all $n$-rows are multiplied by $k$, so our determinant $\det(kA)$ will be $\underbrace{k \cdot k \cdot … k}_{\mathrm{n-times}} = k^n$ greater than $\det(A)$. Hence, $\det(kA) = k^n \det (A)$. $\blacksquare$

Before we look at the next property concerning matrix products, we will first establish the following lemma (mini theorem) that we will need to prove the next couple of properties

Lemma 1: If $A$ and $E$ are two $n \times n$ matrices where $E$ is an elementary matrix, then $\det(EA) = \det(E) \det(A)$. |

**Proof:**Suppose that $E$ results by multiplying a row of $I$ by some scalar $k$. We thus know that the determinant of this matrix is $\det(E) = k$. Furthermore, we note that $EA$ results from multiplying a row in $A$ by $k$, so we have $\det(EA) = k \det (A)$. Making the substitution that $\det(E) = k$, we get that $\det(EA) = \det(E) \det(A)$.

- Now suppose $E$ results by interchanging rows. It thus follows that $\det(E) = -1$. Now if $EA$ is the result from interchanging two rows, then $\det(EA) = -\det(A)$. Making the substitution that $\det(E) = -1$, we have $\det(EA) = \det(E) \det(A)$.

- Lastly, suppose that $E$ results by adding a multiple of one row to another. We know that $\det(E) = 1$. Now if $EA$ is the result from adding a multiple of one row to another, then $\det(EA) = \det(A)$. Making the substitution that $\det(E) = 1$, we have the same result in that $\det(EA) = \det(E) \det(A)$. $\blacksquare$

We will now look at two more theorems regarding determinants.

Theorem 2: If $A$ is an $n \times n$ matrix and if $\det(A) ≠ 0$, then $A$ is invertible. If $\det(A) = 0$, then $A$ is not invertible. |

Theorem 3: If $A$ and $B$ are $n \times n$ matrices, then $\det(AB) = \det(A) \det(B)$. |

### Related post:

- Grade Nine learners taught mathematics skills – Tembisan
- A Library Browse Leads Math’s Bill Dunham to Question the Origins of The Möbius Function – Bryn Mawr Now
- Year 5 and 6 students to sit competition this Wednesday – Great Lakes Advocate
- USC student wins silver medal in China math contest – SunStar Philippines
- CBSE Exam 2020: Two separate examinations to be conducted for Class 10 Mathematics – Jagran Josh
- Concepts incomplete, problems unsolvable in math textbooks – Times of India
- Education Ministry to Host Tertiary and Employment Fairs – Government of Jamaica, Jamaica Information Service
- Vogue’s Edwina McCann and Westpac’s Anastasia Cammaroto on how they inspire women to pursue STEM – Vogue Australia
- Jonee Wilson, Temple Walkowiak to Measure High-Quality Instructional Practices to Support Marginalized Students in Rigorous Mathematics through NSF Grant – NC State College of Education
- Australian Conference on Science and Mathematics Education – Australian Academy of Science