Table of Contents

Line Integrals with Respect to Specific Variables Examples 1
Recall from the Line Integrals with Respect to Specific Variables page that if $z = f(x, y)$ is a two variable realvalued function and $C$ is a smooth plane curve parameterized as $x = x(t)$ and $y = y(t)$ for $a ≤ t ≤ b$ then the line integral of $f$ along $C$ with respect to $x$ and the line integral of $f$ along $C$ with respect to $y$ are:
(1)
When these integrals occur together, we also use the shortened notation:
(2)
The same notation and definitions are used for line integrals with respect to $x$, $y$, or $z$ of the three variable realvalued function $w = f(x, y, z)$.
Let’s now look at some examples of computing these sort of integrals.
Example 1
Evaluate $\int_C z \: dx + x \: dy + y \: dz$ where $C$ is the curve given parametrically by $x = t^2$, $y = t^3$, and $z = t^2$ for $0 ≤ t ≤ 1$.
We note that $x'(t) = 2t$, $y'(t) = 3t^2$ and $z'(t) = 2t$, and so, using the formula directly and we have that:
(3)
Example 2
Evaluate $\int_C z^2 \: dx + x^2 \: dy + y^2 \: dz$ where $C$ is the line segment that joins the points $(1, 0, 0)$ and $(4, 1, 2)$.
We need to first parameterize this line segment. Fortunately, this is easy to do. For $0 ≤ t ≤ 1$ we will have that:
(4)
Thus we have that $x(t) = 1 + 3t$, $y(t) = t$ and $z(t) = 2t$. Therefore:
(5)
Related post:
 New technique developed to detect autism in children – EurekAlert
 Gujarat Board to offer Mathematics to NonScience Students from this year onwards – Jagran Josh
 Institute of Mathematics & Application (IMA) Recruitment 2019 for Professor Posts – Jagran Josh
 Help with primary school mathematics — September is just nine weeks away – Galway Advertiser
 Government Launches Effort to Strengthen Math Skills & Improve Job Prospects – Government of Ontario News
 Chaiwalla to Doctor: 5 Teachers Providing Free JEE/NEET Coaching to Needy Students – The Better India
 A celebration of Science, Technology, Engineering, and Mathematics (STEM) – Daily Trust
 Sum of a life – THE WEEK
 Assistant Professor (Tenure Track) in Mathematics in South Holland, Delft – IamExpat in the Netherlands
 Standing in Galileo’s shadow: Why Thomas Harriot should take his place in the scientific hall of fame – OUPblog