# Line Integrals on Piecewise Smooth Curves

Recall from the Line Integrals page that if $z = f(x, y)$ is a two variable real-valued function and if the smooth curve $C$ is given parametrically by $x = x(t)$ and $y = y(t)$ for $a ≤ t ≤ b$, then the line integral of $f$ along $C$ is given by:

(1)

Now suppose instead that the curve $C$ is not smooth such as the one illustrated below:

Geometrically, the curve $C$ is not smooth because $C$ has a sharp point.

Now suppose that $C$ is actually a piecewise smooth curve, that is, $C$ is the union of a finite number $n$ of smooth curves $C_1$, $C_2$, …, $C_n$ as illustrated below:

Then we can still compute the line integral of $f$ along $C$ as the sum of the line integrals of $f$ along $C_1$, $C_2$, …, $C_n$, that is:

(2)

### Related post:

- Grade Nine learners taught mathematics skills – Tembisan
- A Library Browse Leads Math’s Bill Dunham to Question the Origins of The Möbius Function – Bryn Mawr Now
- Year 5 and 6 students to sit competition this Wednesday – Great Lakes Advocate
- USC student wins silver medal in China math contest – SunStar Philippines
- CBSE Exam 2020: Two separate examinations to be conducted for Class 10 Mathematics – Jagran Josh
- Concepts incomplete, problems unsolvable in math textbooks – Times of India
- Education Ministry to Host Tertiary and Employment Fairs – Government of Jamaica, Jamaica Information Service
- Vogue’s Edwina McCann and Westpac’s Anastasia Cammaroto on how they inspire women to pursue STEM – Vogue Australia
- Jonee Wilson, Temple Walkowiak to Measure High-Quality Instructional Practices to Support Marginalized Students in Rigorous Mathematics through NSF Grant – NC State College of Education
- Australian Conference on Science and Mathematics Education – Australian Academy of Science