# Double Integrals over General Domains

We have just looked at Double Integrals over Rectangles. Recall that if $z = f(x, y)$ is a two variable real-valued function and let $R = [a, b] \times [c, d] \subseteq D(f)$ be a rectangular subset of the domain. Then the double integral of $f$ over $R$ (provided this limit exists) is:

(1)

Sometimes we may be more interested in computing double integrals over subsets of the domain that aren’t necessarily rectangles and instead some other shape. Let $D \subseteq D(f)$ be a subset of the domain that is not necessarily a rectangle, and inscribe $D$ within a rectangle $R$ whose side lengths are parallel to the $x$ and $y$ axes.

We will define the two variable real-valued function $\hat{f} (x, y)$ as follows:

(2)

We are now ready to define the double integral of $f$ over $D$.

Definition: Let $z = f(x, y)$ be a two variable real-valued function that is bounded on $D \subseteq D(f)$ and let $R$ be a rectangle whose sides are parallel to the $x$ and $y$ axes such that $D \subseteq R$. Let $f$ be integrable over $R$, and let $\hat{f} = \left\{\begin{matrix} f(x,y) & \mathrm{if} \: (x,y) \in D \\ 0 & \mathrm{if} \: (x,y) \not \in D \end{matrix}\right.$. Then the Double Integral of $f$ over $D$ is defined to be $\iint_D f(x,y) \: dA = \iint_{R} \hat{f} (x,y) \: dA$. |

*Note that $\iint_D f(x,y) \: dA = \iint_{R} \hat{f} (x,y) \: dA$ since for all $(x, y) \not \in D$, $\hat{f} (x, y) = 0$ which does not contribute any value to the double integral.*

### Related post:

- Grade Nine learners taught mathematics skills – Tembisan
- A Library Browse Leads Math’s Bill Dunham to Question the Origins of The Möbius Function – Bryn Mawr Now
- Year 5 and 6 students to sit competition this Wednesday – Great Lakes Advocate
- USC student wins silver medal in China math contest – SunStar Philippines
- CBSE Exam 2020: Two separate examinations to be conducted for Class 10 Mathematics – Jagran Josh
- Concepts incomplete, problems unsolvable in math textbooks – Times of India
- Education Ministry to Host Tertiary and Employment Fairs – Government of Jamaica, Jamaica Information Service
- Vogue’s Edwina McCann and Westpac’s Anastasia Cammaroto on how they inspire women to pursue STEM – Vogue Australia
- Jonee Wilson, Temple Walkowiak to Measure High-Quality Instructional Practices to Support Marginalized Students in Rigorous Mathematics through NSF Grant – NC State College of Education
- Australian Conference on Science and Mathematics Education – Australian Academy of Science