# Determining the Validity of an Argument by Rules of Inference

Let $P$, $Q$, and $R$ be statements. So far we have discussed the following rules of inference:

- Modus Ponens: $(P \wedge (P \rightarrow Q)) \rightarrow Q$.

- Modus Tollens: $((P \rightarrow Q) \wedge \neg Q) \rightarrow \neg P$.

- The Law of Syllogism: $((P \rightarrow Q) \wedge (Q \rightarrow R)) \rightarrow R$

We will now look at an example of determining if an argument is valid by using these rules of inference. In the examples below, we will list our premises and then list our conclusion below a dotted line.

## Example 1

**Determine if the following argument is valid:**

(1)

\begin{matrix} \mathrm{Premise \: 1} & P\\ \mathrm{Premise \: 2} & P \rightarrow \neg Q\\ \mathrm{Premise \: 3} & \neg Q \rightarrow \neg R\\ & —\\ \mathrm{Conclusion} & \therefore \neg R \end{matrix}

The argument is valid. Here are the steps:

(2)

\begin{align} \quad 1. & P \rightarrow \neg Q & (\mathrm{Premise \: 2}) \\ \quad 2. & \neg Q \rightarrow \neg R & (\mathrm{Premise \: 3}) \\ \quad 3. & P \rightarrow \neg R & (\mathrm{The \: Law \: of \: Syllogism \: with \: (1) \: and \: (2)}) \\ \quad 4. & P & (\mathrm{Premise \: 1}) \\ \quad 5. & \neg R & (\mathrm{Modus \: Ponens \: with \: (4) \: and \: (3)}) \end{align}

### Related post:

- Reisch receives SUNY Chancellor’s Award | News, Sports, Jobs – Evening Observer
- An overall 2nd place for Malta in an International Mental Mathematics Challenge – Malta Independent Online
- DU Admissions 2019: Mathematics Must In Best Of Four Subjects For Admission Into Eco(H); JMC, Stephen’s Stick To Old Rule – Swarajya
- Agami Education Foundation holds teachers’ training on Teaching Mathematics by Olympiad Technique – Dhaka Tribune
- 2nd place for Malta in international Mental Mathematics Challenge – Newsbook
- Darlington pupils among most-skilled mathematics in the UK – Darlington and Stockton Times
- Women and minority faculty in science, technology, engineering and mathematics (STEM) – Open Access Government
- The messy mathematics of British Columbia’s CleanBC plan – Business in Vancouver
- All Limerick student’s hard work adds up to him winning top mathematics award in Ireland – Limerick Leader
- CMU-Q researchers explore the mathematics of personalised medicine – The Peninsula Qatar